imported>Zahnputzbecher |
imported>Ocd-cologne (Die letzte Textänderung von 153.109.119.197 wurde verworfen und die Version 220557619 von Ocd-cologne wiederhergestellt.) |
||
Zeile 4: | Zeile 4: | ||
|Formelzeichen=<math>p</math> | |Formelzeichen=<math>p</math> | ||
|AbgeleitetVon= | |AbgeleitetVon= | ||
|SI=[[Pascal (Einheit)|Pa]] =[[Newton (Einheit)|N]]/[[Quadratmeter|m]]<sup>2</sup> =[[Kilogramm|kg]]·[[Meter|m]]<sup>−1</sup>·[[Sekunde|s]]<sup>−2</sup> | |SI=[[Pascal (Einheit)|Pa]] = [[Newton (Einheit)|N]]/[[Quadratmeter|m]]<sup>2</sup><br /> = [[Kilogramm|kg]]{{·}}[[Meter|m]]<sup>−1</sup>{{·}}[[Sekunde|s]]<sup>−2</sup> | ||
|SI-Dimension=[[Masse (Physik)|M]]·[[Länge (Physik)|L]]<sup>−1</sup>·[[Zeit|T]]<sup>−2</sup> | |SI-Dimension=[[Masse (Physik)|M]]{{·}}[[Länge (Physik)|L]]<sup>−1</sup>{{·}}[[Zeit|T]]<sup>−2</sup> | ||
|cgs=[[Barye (Einheit)|Ba]] = [[Dyn (Einheit)|dyn]]/[[Zentimeter|cm]]<sup>2</sup> = [[Gramm|g]]·[[Zentimeter|cm]]<sup>−1</sup>·[[Sekunde|s]]<sup>−2</sup> | |cgs=[[Barye (Einheit)|Ba]] = [[Dyn (Einheit)|dyn]]/[[Zentimeter|cm]]<sup>2</sup><br /> = [[Gramm|g]]{{·}}[[Zentimeter|cm]]<sup>−1</sup>{{·}}[[Sekunde|s]]<sup>−2</sup> | ||
|cgs-Dimension=[[Masse (Physik)|M]]·[[Länge (Physik)|L]]<sup>−1</sup>·[[Zeit|T]]<sup>−2</sup> | |cgs-Dimension=[[Masse (Physik)|M]]{{·}}[[Länge (Physik)|L]]<sup>−1</sup>{{·}}[[Zeit|T]]<sup>−2</sup>}} | ||
In der [[Physik]] ist der '''Druck''' | [[Datei:Снежок1.jpg|mini|Abb. 1: Der Schneeball wird durch Druck der Handinnenflächen geformt]] | ||
In der [[Physik]] ist der '''Druck''' die Wirkung einer flächen­verteilten [[Normalkraft|Kraft]], die senkrecht auf einen Körper wirkt. Der Druck ist positiv, wenn er zum Körper hin gerichtet ist, ein negativer Druck entspricht einem Zug.<ref name="lexikon">{{Internetquelle| url=http://www.spektrum.de/lexikon/physik/druck/3421| titel=Druck – Lexikon der Physik| hrsg=Spektrum Verlag| zugriff=2022-02-04}}</ref> Ein Beispiel ist der [[Schneeball]], der von Hand geformt wird, indem durch Druck der Hand­innen­fläche der lockere Schnee zusammenge''drückt'' wird. Umgekehrt übt der Schnee dabei auch einen spürbaren Gegen­druck auf die Hand­innen­fläche aus. Druck tritt nicht nur an Grenz- und Ober­flächen, sondern auch im Inneren von Fest­körpern, Flüssig­keiten oder Gasen auf. So ist der [[Luftdruck]] auf der Erdoberfläche allgegenwärtig. Nach dem '''Pascal’schen Prinzip''' (von [[Blaise Pascal]]) breitet sich Druck in ruhenden Flüssig­keiten und Gasen allseitig aus und wirkt nach [[Leonhard Euler]] im Volumen in alle Richtungen, aber immer senkrecht auf Wände.<ref name="szabo">{{Literatur | |||
| Autor=[[István Szabó (Ingenieur)| István Szabó]] | |||
| Titel=Geschichte der mechanischen Prinzipien | |||
| Verlag=Springer | |||
| Jahr=2013 | |||
| ISBN=978-3-034-85301-9 | |||
| Online={{Google Buch| BuchID=SJOmBgAAQBAJ| Seite=249}} | |||
| Abruf=2022-02-04}}</ref> | |||
Druck ist eine [[Intensive Größe|intensive]], [[Skalare Größe|skalare]] [[physikalische Größe]], die insbesondere in der [[Strömungsmechanik]] und [[Thermodynamik]] eine wichtige Rolle spielt. Die flächenverteilte Kraft ist genauer der ''mechanische Druck'', der eine in alle Raumrichtungen gleichermaßen wirkende [[Normalspannung]] (ein Spezialfall der [[mechanische Spannung|mechanischen Spannung]]) ist. Der ''thermodynamische Druck'' ist eine [[Zustandsgröße]], die bei einem Gas mit einer [[Zustandsgleichung]] definiert wird, und diese Zustandsgröße kann im [[Nichtgleichgewichtssystem|Ungleichgewicht]] vom mechanischen Druck abweichen. Das übliche [[Formelzeichen]] ''p'' lehnt sich an das lateinische bzw. englische Wort für Druck ({{laS|pressio|en=pressure}}) an. | |||
Das [[Pauli-Prinzip]] der [[Quantenphysik]] führt bei [[Fermion]]en zu einem [[Entartungsdruck]], der beispielsweise einen [[Weißer Zwerg|Weißen Zwergstern]] vor dem weiteren Kollaps bewahrt. Nach der [[Allgemeine Relativitätstheorie|allgemeinen Relativitätstheorie]] trägt auch Druck zur [[Gravitation]]swirkung bei. | |||
In der [[Kontinuumsmechanik]] stellt der Druck ein skalares '''Druckfeld''' dar, das jeden [[Körper (Physik)|Körper]] ausfüllt. | |||
== Geschichte == | |||
[[Datei:Hydrostatische paradox stevin.gif|mini|Abb. 2: Hydrostatisches Paradoxon nach Stevin: Das wenige Wasser im Bereich ABCD des Gefäßes drückt genau so stark gegen die Wand CD wie das viele Wasser in CDEF.]] | |||
Im [[Altertum]] waren bereits [[Archimedes]], [[Ktesibios]], [[Philon von Byzanz]], [[Heron von Alexandria]] und [[Sextus Iulius Frontinus]] die Wirkung des Drucks von Wasser und Luft bekannt. Im [[Mittelalter]] ist [[Alhazen]] zu erwähnen, der sich eine richtige Vorstellung vom Luftdruck machte bevor in der [[Renaissance]] der holländische Kaufmann [[Simon Stevin]] (1548–1620) die ersten Prinzipien der [[Hydrostatik]] und das [[Hydrostatisches Paradoxon|hydrostatische Paradoxon]] formulierte, siehe Abb. 2.<ref>{{Literatur | |||
| Autor=Simon Stevin van Brugghe | |||
Im [[Altertum]] waren bereits [[Archimedes]], [[Ktesibios]], [[Philon von Byzanz]], [[Heron von Alexandria]] und [[Sextus Iulius Frontinus]] die Wirkung des Drucks von Wasser und Luft bekannt. Im [[Mittelalter]] ist [[Alhazen]] zu erwähnen, der sich eine richtige Vorstellung vom Luftdruck machte bevor in der [[Renaissance]] der holländische Kaufmann [[Simon Stevin]] (1548–1620) die ersten Prinzipien der [[Hydrostatik]] und das [[Hydrostatisches Paradoxon|hydrostatische Paradoxon]] formulierte, siehe | | Titel=De Beghinselen des Waterwichts | ||
| Ort=Leyden | |||
| Verlag=Christoffel Plantijn | |||
| Jahr=1586 | |||
| Online=https://archive.org/details/ned-kbn-all-00011058-003 | |||
| Zugriff=2017-04-27 | |||
| Seiten=58 f. | |||
| Zitat=t'cleinste water ABCD druckt euen soo stijf teghen den boden CD, als t'grooste water CDEF | |||
|Sprache=nl }}</ref> | |||
[[Datei: | {| class="wikitable float-left" | ||
Grundlegende Forschungsarbeiten nahmen im 17. Jahrhundert ihren Ausgang am Hof des Großherzogs [[Cosimo II. de’ Medici]]. Dort stellte der Brunnenmeister mit Erstaunen fest, dass er Wasser mittels einer Saugpumpe nicht höher als 32 Fuß (10,26 m) heben konnte. Über der Wassersäule bildete sich – wie im Rohr | |- class="hintergrundfarbe2" | ||
|style="text-align:center"| [[Datei:Baro 0.png|rahmenlos|hochkant=0.3]] | |||
|- class="hintergrundfarbe1" | |||
|style="width:200px"| Abb. 3: In einem mit Quecksilber gefüllten, oben geschlossenen Rohr bildet sich darin ab einer Höhe von etwa 760 mm ein Vakuum (A–C), in dem der absolute Druck nahe null ist. Das zeigt, dass Quecksilber hier keinen nennenswerten, negativen, absoluten Druck aufnehmen kann. | |||
|} | |||
Grundlegende Forschungsarbeiten nahmen im 17. Jahrhundert ihren Ausgang am Hof des Großherzogs [[Cosimo II. de’ Medici]]<ref>{{Literatur | |||
| Autor=Hans Loeffel | |||
| Titel=Blaise Pascal 1623–1662 | |||
| Verlag=Birkhäuser Verlag | |||
| Ort=Basel | |||
| Jahr=1987 | |||
| ISBN=978-3-0348-7245-4 | |||
| DOI=10.1007/978-3-0348-7244-7 | |||
| Online=https://rd.springer.com/chapter/10.1007/978-3-0348-7244-7_8 | |||
| Zugriff=2019-12-09}}</ref>. Dort stellte der Brunnenmeister mit Erstaunen fest, dass er Wasser mittels einer Saugpumpe nicht höher als 32 Fuß (10,26 m) heben konnte. Über der Wassersäule bildete sich – wie im Rohr in Abb. 3 – ein luftleerer Raum, der das weitere Aufsteigen verhindert. Dieses Phänomen wurde dem Lehrer und [[Hofmathematiker]] Cosimos II., [[Galileo Galilei]], mitgeteilt, der es daraufhin in seinen [[Galileo Galilei#Hausarrest 1633–1642 und die Discorsi|''Discorsi'']] behandelte (S. 16–17). [[Vincenzo Viviani]], ein Mitarbeiter Galileis, schloss 1643 als erster, dass es der Luftdruck ist, der das Wasser im Saugrohr hochdrückt (in Abb. 3 bei B). [[Evangelista Torricelli]], Assistent und Nachfolger Galileis, machte Versuche mit einem mit [[Quecksilber]] gefüllten Rohr wie in Abb. 3 und erklärte aus der unterschiedlichen Dichte von [[Wasser]] und Quecksilber, warum ersteres 13½ mal höher steigt als letzteres mit 760 [[Millimeter|mm]]. Dabei erfand Torricelli das [[Quecksilberbarometer]].<ref name="Odefey">{{Internetquelle| url=https://www.hs.uni-hamburg.de/DE/GNT/exk/pdf/pascal.pdf| titel=Blaise Pascal| autor=Alexander Odefey| zugriff=2017-04-20}}</ref> | |||
<ref>{{Literatur| Autor=[[Wilhelm H. Westphal (Physiker)|Wilhelm H. Westphal]]| Titel=Physik| Verlag=Springer| Ort=Berlin/Heidelberg| Jahr=1953| Online={{Google Buch| BuchID=Z8x_BwAAQBAJ| Seite=165}}| Seiten=165| Zugriff=2017-04-25}}</ref> | |||
Die Kunde vom „italienischen Experiment“ kam 1644 über [[Marin Mersenne]] und | Die Kunde vom „italienischen Experiment“ kam 1644 über [[Marin Mersenne]] und den Physiker [[Pierre Petit (Ingenieur)|Pierre Petit]] zu [[Blaise Pascal]]. Dieser wiederholte Torricellis Experimente und folgerte, dass der Druck in einer Flüssigkeit oder einem Gas proportional zur Tiefe ist. Entsprechend muss, wenn die Quecksilbersäule vom Luftdruck getragen wird, ihre Höhe auf einem Berg kleiner als im Tal sein. Petit und Pascals Schwager [[Florin Périer]] führten am 19. September 1648 die entsprechenden Messungen in [[Clermont-Ferrand]] und auf dem Gipfel des 1465 m hohen [[Puy de Dôme]] durch und erhielten die erwarteten Ergebnisse.<ref>{{Literatur| Autor=Blaise Pascal| Titel=Gesamtausgabe von Plaise Pascal| Originaltitel=Oeuvres de Plaise Pascal| Band=Band 4| Ort=La Haye| Verlag=Detune|Jahr=1779| Seiten=353 – 359 ff.| Kommentar=Brief von Périer an Pascal vom 22. September 1648, der das Experiment detailliert beschreibt| Online=https://archive.org/details/bub_gb_D9DZeTX-VQoC| Format=pdf | ||
* das ''' | | Sprache=fr| Zugriff=2017-04-23}}</ref> | ||
* das ''' | Schon im Oktober veröffentlichte Pascal seine Resultate als ''Bericht vom großen Experiment über das Gleichgewicht von Flüssigkeiten'' (Pascal: ''Récit de la grande expérience de l'équilibre des liqueurs'')<ref name="Odefey"/>. | ||
* das Funktionsprinzip einer | In der ''Abhandlung über das Gleichgewicht von Flüssigkeiten und vom Gewicht der Masse der Luft''<ref name="traitez">{{Literatur| Autor=Blaise Pascal| Originaltitel=Traitez de l'équilibre des liqueurs et de la pesanteur de la masse de l'air| Titel=Abhandlung über das Gleichgewicht von Flüssigkeiten und vom Gewicht der Masse der Luft| Jahr=1663| Ort=Paris| Sprache=fr| Format=pdf| Online=https://archive.org/details/bub_gb_F8UPAAAAQAAJ| Zugriff=2017-04-21| Kommentar=Posthume zweite Veröffentlichung}}</ref> | ||
von 1653 formulierte Pascal unter anderem | |||
* das '''Pascalsche Prinzip''', wonach sich der Druck in ruhenden Flüssigkeiten allseitig ausbreitet,<ref>{{Literatur| Autor=Paul A. Tipler, Gene Mosca| Titel=Physik| Verlag=Springer-Verlag| Ort=Berlin, Heidelberg| ISBN=978-3-642-54165-0| DOI=10.1007/978-3-642-54166-7| Online={{Google Buch|BuchID=RCj3BQAAQBAJ| Seite=376}}| Zugriff=2017-04-25}}</ref> | |||
* das '''Pascalsche Gesetz''' für den hydrostatischen Druck, der linear mit der Tiefe zunimmt, siehe unten, und | |||
* das Funktionsprinzip einer ''neuen Maschine um Kräfte zu multiplizieren'' (Pascal: ''machine nouvelle pour multiplier les forces''), also der [[Hydraulische Presse|hydraulischen Presse]]. | |||
[[Datei:Magdeburg.jpg|mini|Stich von Guerickes Halbkugelversuch]] | [[Datei:Magdeburg.jpg|mini|Abb. 4: Stich von Guerickes Halbkugelversuch]] | ||
[[Otto von Guericke]] führte 1654 vor dem Reichstag zu Regensburg sein berühmtes Experiment mit den [[Magdeburger Halbkugeln]] vor, siehe | [[Otto von Guericke]] führte 1654 vor dem Reichstag zu Regensburg sein berühmtes Experiment mit den [[Magdeburger Halbkugeln]] vor, siehe Abb. 4. | ||
Neue Erkenntnisse kamen unter anderem von<ref>{{Literatur| Hrsg=[[Ludwig Darmstaedter]]| Titel=Handbuch zur Geschichte der Naturwissenschaften und Technik| Verlag=Springer | Neue Erkenntnisse kamen unter anderem von<ref>{{Literatur| Hrsg=[[Ludwig Darmstaedter]]| Titel=Handbuch zur Geschichte der Naturwissenschaften und Technik| Verlag=Springer| Ort=Berlin/Heidelberg| Jahr=1908| Online=https://commons.wikimedia.org/wiki/File%3AHandbuch_zur_Geschichte_der_Naturwissenschaften_und_der_Technik.pdf| Format=PDF| Zugriff=2017-04-24}}</ref> | ||
| Format=PDF | |||
* [[Robert Boyle]] und [[Edme Mariotte]] 1662 durch das [[Boyle-Mariotte|Gesetz von Boyle-Mariotte]], | * [[Robert Boyle]] und [[Edme Mariotte]] 1662 durch das [[Boyle-Mariotte|Gesetz von Boyle-Mariotte]], | ||
* [[Daniel Bernoulli]] 1738 durch die Rückführung des Drucks von Gasen auf die Stöße der Gasmoleküle ([[Kinetische Gastheorie]]) sowie durch Unterscheidung zwischen dem | * [[Daniel Bernoulli]] 1738 durch die Rückführung des Drucks von Gasen auf die Stöße der Gasmoleküle ([[Kinetische Gastheorie]]) sowie durch Unterscheidung zwischen dem statischen und dynamischen Druck ([[Bernoullische Druckgleichung]]), | ||
* [[Leonhard Euler]] mit der Definition des Drucks in einem Fluid in seiner bis heute gültigen Form<ref>{{Literatur| Autor=[[Thomas Sonar]]| Titel=Turbulenzen um die Fluidmechanik| | * [[Leonhard Euler]] mit der Definition des Drucks in einem Fluid in seiner bis heute gültigen Form,<ref>{{Literatur| Autor=[[Thomas Sonar]]| Titel=Turbulenzen um die Fluidmechanik| Verlag=Spektrum der Wissenschaft Verlagsgesellschaft| Jahr=2009| Seiten=64–74| ISBN=978-3-941205-34-5}}</ref> dass er also im Volumen in alle Richtungen aber immer senkrecht auf Wände wirkt,<ref name="szabo"/> und | ||
* [[John Dalton]] 1802 durch Entdeckung der [[Partialdruck|Partialdrücke]] von Gasen in Gasgemischen ([[Dalton-Gesetz]]) | * [[John Dalton]] 1802 durch Entdeckung der [[Partialdruck|Partialdrücke]] von Gasen in Gasgemischen ([[Dalton-Gesetz]]) | ||
=={{Anker|Einfache Definition}} | == Definition {{Anker|Einfache Definition}} == | ||
Druck ist | [[Datei:Distributedforce.svg|mini|Abb. 5: Druck als flächenverteilte Kraft <math>p=\lim_{\mathrm{d}A\to 0}\tfrac{\mathrm d F_n}{\mathrm d A}</math>.]] | ||
Druck ist eine flächenverteilte Kraft, wie sie in Abb. 5 dargestellt ist. Sie ergibt sich als [[Grenzwert (Folge)|Grenzwert]] des Verhältnisses, der auf ein Flächenstück <math>\mathrm dA</math> wirkenden flächenverteilten Kraft <math>\mathrm dF_n</math>: | |||
:<math>p=\lim_{\mathrm{d}A\to 0}\frac{\mathrm d F_n}{\mathrm d A}</math> | |||
:<math> p =\lim_{\mathrm{d}A\to 0}\frac{\mathrm d F_n}{\mathrm d A}</math> | |||
mit: | mit: | ||
Zeile 66: | Zeile 91: | ||
|} | |} | ||
[[Vektor]]iell ist der Druck die [[Proportionalitätskonstante]] zwischen dem [[Oberflächenintegral#Oberflächenelement|vektoriellen Oberflächenelement]] <math>\mathrm{d}\vec A</math> und der Normalkraft <math>\mathrm{d}\vec{F}_n,</math> die auf dieses Element wirkt: | Im Inneren eines [[Körper (Physik)|Körpers]] kann ein Flächenelement mit Hilfe des [[Schnittprinzip]]s hergestellt werden. Im betrachteten Punkt X wird der Körper gedanklich in zwei Teile geteilt und der Druck in X wirkt auf den Schnittflächen senkrecht. In einem isotropen, ruhenden oder [[Ideales Fluid|idealen Fluid]] ist der Druck in X immer derselbe, egal welche Orientierung die Schnittfläche hat: Im Punkt X im inneren des Fluids wirkt der Druck allseitig.<ref>{{Literatur | ||
| Autor=M. Bestehorn | |||
| Titel=Hydrodynamik und Strukturbildung | |||
| Seiten=52 | |||
| Verlag=Springer | |||
| Ort=Berlin, Heidelberg u. a. | |||
| Jahr=2006 | |||
| ISBN=978-3-540-33796-6}}</ref> Im Allgemeinen ergibt sich der Druck aus dem Mittelwert der flächenverteilten Kräfte auf allen möglichen Schnittflächen in X, siehe [[#Definition in Technischer Mechanik und Kontinuumsmechanik]]. | |||
[[Datei:Concentratedforce.svg|mini|Abb. 6: Druck als Ergebnis einer Normalkraft (''F<sub>n</sub>''), die auf eine Fläche (A) wirkt.]] | |||
In der Realität sind Kräfte immer flächen- oder volumenverteilt. Gedanklich kann die [[resultierende Kraft]] <math>F_n</math> der flächenverteilten Kraft diese ersetzen und auf die gesamte Fläche bezogen werden, auf der sie wirkt, siehe Abb. 6: | |||
:<math>p = \frac{F_n}{A}</math> | |||
Der Druck ergibt sich ausschließlich aus der senkrecht zur Fläche stehenden [[Vektor#Darstellung in Koordinaten|Komponente]] <math>F_n</math> bzw. <math>\mathrm dF_n</math>. [[Vektor]]iell ist der Druck die [[Proportionalitätskonstante]] zwischen dem [[Oberflächenintegral#Oberflächenelement|vektoriellen Oberflächenelement]] <math>\mathrm{d}\vec A</math> und der Normalkraft <math>\mathrm{d}\vec{F}_n,</math> die auf dieses Element wirkt: | |||
:<math>\mathrm{d}\vec{F}_n=-p\,\mathrm{d}\vec{A} = -p\,\hat{n}\,\mathrm{d}A</math>. | :<math>\mathrm{d}\vec{F}_n=-p\,\mathrm{d}\vec{A} = -p\,\hat{n}\,\mathrm{d}A</math>. | ||
Zeile 76: | Zeile 115: | ||
Für [[Inkompressibilität|inkompressible]] und für kompressible Fluide tragen unterschiedliche Komponenten zum Gesamtdruck bei. Bei frei strömenden Fluiden kann bei Geschwindigkeiten weit unterhalb der [[Schallgeschwindigkeit| Wellenausbreitungsgeschwindigkeit]] insbesondere in Flüssigkeiten in guter Näherung Inkompressibilität angenommen werden. Ruhende Gase hingegen sind kompressibel. | Für [[Inkompressibilität|inkompressible]] und für kompressible Fluide tragen unterschiedliche Komponenten zum Gesamtdruck bei. Bei frei strömenden Fluiden kann bei Geschwindigkeiten weit unterhalb der [[Schallgeschwindigkeit| Wellenausbreitungsgeschwindigkeit]] insbesondere in Flüssigkeiten in guter Näherung Inkompressibilität angenommen werden. Ruhende Gase hingegen sind kompressibel. | ||
== Definition in | == Definition in Technischer Mechanik und Kontinuumsmechanik == | ||
In der [[Kontinuumsmechanik]] ist der Druck eine in alle Raumrichtungen wirkende | In der [[Festigkeitslehre]] der [[Technische Mechanik|technischen Mechanik]] und der [[Kontinuumsmechanik]] ist der Druck eine in alle Raumrichtungen wirkende [[Normalspannung]] <math>\sigma_n</math>. Sie ist die [[Kraft]]­komponente <math>F_n</math> senkrecht zur Fläche <math>A</math> mit Normale <math>n</math> auf der sie wirkt, siehe [[#Definition|Abb. 5]]:<ref>{{Literatur| Autor=H. Balke| Titel=Einführung in die Technische Mechanik| TitelErg=Festigkeitslehre| Seiten=32| Auflage=3.| Verlag=Springer-Vieweg| Jahr=2014| ISBN=978-3-642-40980-6}}</ref> | ||
:<math>\sigma_{n}=\lim_{\Delta A \to 0}\frac{\Delta F_n}{\Delta A}</math> | :<math>\sigma_{n}=\lim_{\Delta A \to 0}\frac{\Delta F_n}{\Delta A}</math> | ||
Zeile 83: | Zeile 122: | ||
Der Druck ist definiert als eine in alle Raumrichtungen wirkende Normalspannung. | Der Druck ist definiert als eine in alle Raumrichtungen wirkende Normalspannung. | ||
In der Kontinuumsmechanik gilt die Vorzeichenregel, dass [[Zugkraft|Zugkräfte]] eine positive Spannung bewirken und durch Druckkräfte hervorgerufene Spannungen ein negatives Vorzeichen | In der Kontinuumsmechanik gilt die Vorzeichenregel, dass [[Zugkraft|Zugkräfte]] eine positive Spannung bewirken und durch Druckkräfte hervorgerufene Spannungen ein negatives Vorzeichen besitzen. Gleichzeitig gilt die Konvention, dass positiver Druck komprimierend wirkt: somit ruft positiver Druck eine negative Spannung hervor. | ||
Der [[Spannungszustand]] in einem Körper wird durch den [[Spannungstensor]] '''σ''' zu einem mathematischen Objekt zusammengefasst. Der ''mechanische Druck'' ist als das negative Drittel der [[Spur (Mathematik)|Spur]] des Spannungstensors definiert:<ref>{{Literatur |Autor=Peter R. Sahm, Ivan Egry, Thomas Volkmann |Titel=Schmelze, Erstarrung, Grenzflächen | Der [[Spannungszustand]] in einem Körper wird durch den [[Spannungstensor]] '''σ''' zu einem mathematischen Objekt zusammengefasst. Der ''mechanische Druck'' ist als das negative Drittel der [[Spur (Mathematik)|Spur]] des Spannungstensors definiert:<ref>{{Literatur |Autor=Peter R. Sahm, Ivan Egry, Thomas Volkmann |Titel=Schmelze, Erstarrung, Grenzflächen. Eine Einführung in die Physik und Technologie flüssiger und fester Metalle |Verlag=Springer |Datum=2001 |Seiten=17 |Online={{Google Buch|BuchID=tEErg2bu10MC}}}}</ref> | ||
:<math>p_{ | :<math>p_\text{mech} := -\frac{1}{3}(\sigma_x + \sigma_y + \sigma_z) | ||
=-\frac{1}{3}\operatorname{Sp}\boldsymbol{\sigma}</math>. | = -\frac{1}{3}\operatorname{Sp}\boldsymbol{\sigma}</math>. | ||
Hier sind | Hier sind <math>\sigma_{x,y,z}</math> die Normalspannungen in <math>x</math>-, <math>y</math>- und <math>z</math>-Richtung eines [[Kartesisches Koordinatensystem|kartesischen Koordinatensystems]]. Weil der Spannungstensor [[Euklidische Transformation|objektiv]] und die Spur eine [[Hauptinvariante]] ist, ist dieser negative Mittelwert der Normalspannungen – der mechanische Druck – [[Bezugssystem#Wechsel des Bezugssystems|bezugssysteminvariant]], d. h. unabhängig von der genauen Ausrichtung der <math>x</math>-, <math>y</math>- und <math>z</math>-Achsen. In Festkörpern kann negativer ''absoluter Druck'', siehe unten, auftreten, was in Flüssigkeiten nur in geringerem Maß und in Gasen fast gar nicht möglich ist (siehe [[#Geschichte]], [[Metastabilität]]<ref>siehe beispielsweise | ||
{{Literatur | |||
| Autor=F. Caupin et al. | |||
| Titel=Untersuchung von Wasser und anderen Fluiden bei negativem Druck | |||
| Sprache=en | |||
| Originaltitel=Exploring water and other liquids at negative pressure | |||
| Sammelwerk=[[Journal of Physics]]: Condensed Matter | |||
| Band=24 | |||
| Nummer=28 | |||
| Jahr=2012 | |||
| ISSN=1361-648X | |||
| DOI=10.1088/0953-8984/24/28/284110 | |||
| Seiten=284110}} | |||
</ref>, [[Casimir-Effekt]], [[Kosmologische Konstante]]). Falls der Spannungstensor gemäß | |||
:<math>\boldsymbol{\sigma} = -p\,\mathbf{1}</math> | :<math>\boldsymbol{\sigma} = -p\,\mathbf{1}</math> | ||
Zeile 100: | Zeile 152: | ||
:<math>\mathrm{d}\vec{F}_n | :<math>\mathrm{d}\vec{F}_n | ||
=\vec{T}^{(\hat n)}\mathrm{d} A | =\vec{T}^{(\hat n)}\mathrm{d} A | ||
=\boldsymbol{\sigma}\cdot\hat n\,\mathrm{d} A | |||
=-p\,\mathbf{1}\cdot\hat{n}\,\mathrm{d} A | =-p\,\mathbf{1}\cdot\hat{n}\,\mathrm{d} A | ||
= -p\,\hat{n}\,\mathrm{d} A</math> | =-p\,\hat{n}\,\mathrm{d} A</math> | ||
D. h. die Richtung der Kraft ist auf einer Fläche ''immer'' normal und bei positivem Druck auf den Körper gerichtet. | D. h. die Richtung der Kraft ist auf einer Fläche ''immer'' normal und bei positivem Druck auf den Körper gerichtet. | ||
Frei strömende Fluide sind bei Geschwindigkeiten weit unterhalb der [[Schallgeschwindigkeit| Wellenausbreitungsgeschwindigkeit]] in guter Näherung [[Inkompressibilität| inkompressibel]]. Dann ist der Druck eine „[[Zwangskraft|Zwangsspannung]]“, die als Reaktion des Fluids auf Kompressionsversuche die Inkompressibilität aufrechterhält. Mathematisch ist der Druck | Frei strömende Fluide sind bei Geschwindigkeiten weit unterhalb der [[Schallgeschwindigkeit| Wellenausbreitungsgeschwindigkeit]] in guter Näherung [[Inkompressibilität| inkompressibel]]. Dann ist der Druck eine „[[Zwangskraft|Zwangsspannung]]“, die als Reaktion des Fluids auf Kompressionsversuche die Inkompressibilität aufrechterhält. Mathematisch ist der Druck hier ein [[Lagrangescher Multiplikator|Lagrange’scher Multiplikator]] für die Nebenbedingung „Inkompressibilität“. Ein Beispiel zur Berechnung des Drucks in der [[Festkörpermechanik]] ist im Artikel zur [[Hyperelastizität#Beispiel|Hyperelastizität]] gegeben. | ||
hier ein [[Lagrangescher Multiplikator|Lagrange’scher Multiplikator]] für die Nebenbedingung | |||
[[Materialmodell]]e definieren den Spannungstensor als Funktion der Deformation des Körpers, wobei der Begriff der Deformation hier so weit gefasst wird, dass auch das Fließen einer Flüssigkeit oder das Strömen eines Gases darunter fällt. Die in der [[Strömungsmechanik]] benutzten Materialmodelle für das [[ideales Gas| ideale Gas]] und das [[Newtonsches Fluid| newtonsche Fluid]] haben die Form | [[Materialmodell]]e definieren den Spannungstensor als Funktion der Deformation des Körpers, wobei der Begriff der Deformation hier so weit gefasst wird, dass auch das Fließen einer Flüssigkeit oder das Strömen eines Gases darunter fällt. Die in der [[Strömungsmechanik]] benutzten Materialmodelle für das [[ideales Gas| ideale Gas]] und das [[Newtonsches Fluid| newtonsche Fluid]] haben die Form | ||
:<math>\boldsymbol{\sigma} = -p_{ | :<math>\boldsymbol{\sigma} = -p_\text{thermo}\,\mathbf{1} + \mathbf{S}</math> | ||
wobei der Anteil '''S''' im newtonschen Fluid durch [[Viskosität]] entsteht und im idealen Gas wegfällt. Der Druck ''p''<sub>thermo</sub> ist der ''thermodynamische Druck'', der sich bei einem Gas aus einer [[Zustandsgleichung]] bestimmt und im Allgemeinen eine Funktion der [[Dichte]] und [[Temperatur]] ist. Der mechanische Druck ist dann: | wobei der Anteil '''S''' im newtonschen Fluid durch [[Viskosität]] entsteht und im idealen Gas wegfällt. Der Druck ''p''<sub>thermo</sub> ist der ''thermodynamische Druck'', der sich bei einem Gas aus einer [[Zustandsgleichung]] bestimmt und im Allgemeinen eine Funktion der [[Dichte]] und [[Temperatur]] ist. Der mechanische Druck ist dann: | ||
:<math>p_{ | :<math>p_\text{mech} = -\frac13 \operatorname{Sp}\boldsymbol{\sigma} | ||
= p_{ | = p_\text{thermo} - \frac13 \operatorname{Sp}\mathbf{S}</math> | ||
Bei vorhandener [[Volumenviskosität]] des Fluids kann der zweite Summand im Ungleichgewicht von Null verschieden sein, sodass sich dann der mechanische und thermodynamische Druck im Fluid voneinander unterscheiden<ref name="Capaldi">{{Literatur |Autor=Franco M. Capaldi |Titel=Continuum Mechanics | Bei vorhandener [[Volumenviskosität]] des Fluids kann der zweite Summand im Ungleichgewicht von Null verschieden sein, sodass sich dann der mechanische und thermodynamische Druck im Fluid voneinander unterscheiden.<ref name="Capaldi">{{Literatur |Autor=Franco M. Capaldi |Titel=Continuum Mechanics. Constitutive Modeling of Structural and Biological Materials |Verlag=Cambridge University Press |Datum=2012 |ISBN=978-1-107-01181-6 |Seiten=157 |Sprache=en |Online={{Google Buch| BuchID=Px2-CvHPDksC| Seite=157}} |Abruf=2017-04-17}}</ref> Die Differenz wäre eine Folge eines erhöhten Widerstands gegen Kompression auf Grund der Volumenviskosität und würde bei Annäherung an ein Gleichgewicht gegen Null gehen. | ||
Der Spannungstensor ist in jedem Punkt des Fluids definiert und stellt somit ein [[Feld (Physik)|Feld]] dar. Aus diesem Feld kann ein ebenfalls den ganzen Körper ausfüllendes ''Druckfeld'' abgeleitet werden. Die [[Divergenz eines Vektorfeldes|Divergenz]] des Spannungstensors repräsentiert den Kraftfluss im Fluid und daher bremst gemäß <math>\operatorname{div}(-p\mathbf{1})=-\operatorname{grad}p</math> ein Druckanstieg Fluidelemente ab, siehe [[Navier-Stokes-Gleichungen]] und [[ | Der Spannungstensor ist in jedem Punkt des Fluids definiert und stellt somit ein [[Feld (Physik)|Feld]] dar. Aus diesem Feld kann ein ebenfalls den ganzen Körper ausfüllendes ''Druckfeld'' abgeleitet werden. Die [[Divergenz eines Vektorfeldes|Divergenz]] des Spannungstensors repräsentiert den Kraftfluss im Fluid und daher bremst gemäß <math>\operatorname{div}(-p\mathbf{1})=-\operatorname{grad}p=\nabla p</math> ein Druckanstieg Fluidelemente ab, siehe [[Navier-Stokes-Gleichungen]] und [[Euler-Gleichungen (Strömungsmechanik)|Euler-Gleichungen der Strömungsmechanik]]. | ||
== | == Bernoullische Druckgleichung == | ||
[[Datei:Druck in strömenden Medien.svg|mini|hochkant=1.5|Statischer und dynamischer Druckanteil in einer verlustfreien Strömung]] | [[Datei:Druck in strömenden Medien.svg|mini|hochkant=1.5|Abb. 7: Statischer und dynamischer Druckanteil in einer verlustfreien Strömung]] | ||
{{Hauptartikel|Bernoulli-Gleichung}} | |||
In einem realen System | In [[Strömung|strömenden]] Flüssigkeiten und Gasen ([[Fluid]]en) nimmt der Druck gegenüber ruhenden Bereichen des Strömungsfelds ab. Der Druck wird hier ''statischer Druck'' genannt und die Druckabnahme ''dynamischer Druck''. Letzterer manifestiert sich erst, wenn das strömende Fluid abgebremst wird (''[[Staudruck]]''). Während beide Teile mit der [[Dichte]] wachsen, nimmt nur der statische Anteil mit dem ''hydrostatischen Druck'' zu, der von der Ortshöhe und von der [[Erdbeschleunigung]], also der [[Gravitation]], abhängig ist. | ||
In Strömungen, wo die Bernoulli-Gleichung anwendbar ist (insbesondere in [[Fließfähigkeit|dünnflüssigen]] [[Inkompressibilität|inkompressiblen]] Fluiden) gibt es eine [[Integral der Bewegung|Bewegungskonstante]], den ''[[Totaldruck|Total-]]'' oder ''[[Gesamtdruck]]'', der auf einer Stromlinie überall denselben Wert hat. Er ist die Summe aus dem statischen und dem dynamischen Druck sowie einem Anteil, der die [[Lageenergie]] berücksichtigt und gegenläufig zum hydrostatischen Druck zunimmt. | |||
In einem realen System sind zusätzlich die [[Druckverlust]]e im Strömungsverlauf zu beachten, etwa durch den Impulsaustausch des viskosen Fluids mit der Wandung der Rohrleitung infolge der [[Haftbedingung]]. | |||
=== Hydrostatischer Druck === | === Hydrostatischer Druck === | ||
Zeile 131: | Zeile 187: | ||
Ein in einem [[Schwerefeld]] ruhendes Fluid übt auf jeden in ihm eingetauchten Körper nach dem Pascal’schen Prinzip einen allseitig wirkenden ''hydrostatischen Druck'' aus, der nach dem Pascal’schen Gesetz mit der Tiefe zunimmt. Beispiele für einen hydrostatischen Druck sind der [[Wasserdruck]] und der [[Luftdruck]]. | Ein in einem [[Schwerefeld]] ruhendes Fluid übt auf jeden in ihm eingetauchten Körper nach dem Pascal’schen Prinzip einen allseitig wirkenden ''hydrostatischen Druck'' aus, der nach dem Pascal’schen Gesetz mit der Tiefe zunimmt. Beispiele für einen hydrostatischen Druck sind der [[Wasserdruck]] und der [[Luftdruck]]. | ||
In der ruhenden Flüssigkeit existieren ausschließlich Normalspannungen, die in alle Richtungen gleichermaßen wirken, eben jener hydrostatische Druck. Im schubfreien [[Spannungszustand#Hydrostatischer Spannungszustand| hydrostatischen Spannungszustand]] degeneriert der [[Mohrscher Spannungskreis|Mohr’sche Spannungskreis]] zu einem Punkt. | In der ruhenden Flüssigkeit existieren ausschließlich Normalspannungen, die in alle Richtungen gleichermaßen wirken, eben jener hydrostatische Druck. Im schubfreien [[Spannungszustand#Hydrostatischer Spannungszustand| hydrostatischen Spannungszustand]] degeneriert der [[Mohrscher Spannungskreis|Mohr’sche Spannungskreis]] zu einem Punkt. | ||
Der hydrostatische Druck | Der hydrostatische Druck <math>p(h)</math> am Grund einer stehenden Flüssigkeitssäule der Höhe <math>h</math> und der Dichte <math>\rho</math> unter Wirkung der [[Schwerebeschleunigung]] <math>g</math> ergibt sich aus dem ''[[Pascalsches Gesetz|Pascal’schen Gesetz]]'' zu | ||
: | : <math>p(h) := \rho g h + p_\mathrm{s}</math> | ||
Dabei ist | Dabei ist <math>p_\mathrm{s}</math> ein Druckanteil, der von der Umgebung am oberen Ende der Flüssigkeitssäule (bei <math>h=0</math>) aufgebracht wird; er wird entsprechend ''Umgebungsdruck'' oder ''Betriebsdruck''<ref name="Betriebsdruck">{{Internetquelle | ||
|url=http://www.spektrum.de/lexikon/physik/betriebsdruck/1497 | |||
|titel=Betriebsdruck – Lexikon der Physik | |||
|hrsg=Spektrum Verlag | |||
|abruf=2022-01-18}} | |||
</ref> genannt. In einem strömenden Fluid kann der Druck <math>p_\mathrm{s}</math> von Ort zu Ort variieren. | |||
=== | === Statischer Druck === | ||
Der '' | {{Hauptartikel|Statischer Druck}} | ||
Der ''statische Druck'' ist der thermomechanische Druck in einer Strömung, den also ein Fluidelement spürt oder den ein mit ihm bewegter Beobachter messen würde. In der [[Bernoullische Druckgleichung|Bernoulli’schen Druckgleichung]] tritt er als Druck <math>p</math> auf und entspricht in ruhenden Bereichen des Strömungsfeldes dem dort herrschenden hydrostatischen Druck. In bewegten Teilen des Strömungsfeldes nimmt der statische Druck um den dynamischen Druckanteil ab, denn ihre Summe, der [[#Totaldruck]], ist auf einer horizontalen Stromlinie eine Konstante. | |||
=== Dynamischer Druck {{Anker|Hydrodynamischer Druck}} === | |||
{{Hauptartikel|Staudruck}} | |||
Der ''dynamische Druck'' <math>p_\mathrm{d}</math> (auch ''hydrodynamischer Druck'' oder ''Staudruck'') entspricht der volumenspezifischen [[Kinetische Energie|kinetischen Energie]] der strömenden Fluidelemente in einer Strömung. Er wird erst dann als mechanischer Druck spürbar und messbar, wenn die Strömung, wie beispielsweise im [[Staupunkt]], gestoppt wird. Der Staudruck leistet im Staupunkt die [[Arbeit (Physik)|Arbeit]], die notwendig ist, um das Fluidelement zum Stillstand zu bringen. Der Staudruck nimmt mit der [[Dichte]] <math>\rho</math> und dem Quadrat der [[Strömungsgeschwindigkeit]] <math>v</math> der Fluidelemente zu: | |||
:<math>p_\mathrm d := \frac12 \rho v^2</math> | |||
Der | Der dynamische Druck ist nicht direkt messbar, lässt sich aber bei verlustfreier, horizontaler und stationärer Strömung aus der Messung der Differenz zwischen [[Totaldruck]] und statischem Druck bestimmen (siehe [[Prandtlsonde]]). Aus dem dynamischen Druck kann dann die Geschwindigkeit des Fluids ermittelt werden. | ||
=== Totaldruck === | === Totaldruck === | ||
{{Hauptartikel|Totaldruck}} | {{Hauptartikel|Totaldruck}} | ||
Der Totaldruck | Der Totaldruck <math>p_\mathrm{t}</math> ist die Summe aus dem statischen Druck, der potentiellen und der kinetischen Energie der Fluidelemente: | ||
: | : <math>p_\mathrm{t} = p_\mathrm{s} + \rho g z + \frac{\rho}{2} v^2</math> | ||
In Bereichen wo die [[Bernoullische Druckgleichung|Bernoulli’sche Druckgleichung]] anwendbar ist, ist der Totaldruck entlang eines Stromfadens konstant. Beim Übergang von einem größeren zu einem kleineren Querschnitt, wie in [[#Bernoullische Druckgleichung|Abb. 7]], muss gemäß dem [[Kontinuitätsgesetz]] die Strömungsgeschwindigkeit (und damit auch der dynamische Druck) zunehmen. Dies kann nur geschehen, wenn der statische Druck in den kleineren Querschnitten entsprechend abnimmt. Der statische Druckanteil <math>p_\mathrm{s}</math> ist der Druck, den ein mit der Strömung mitschwimmendes Fluidelement verspürt. Der Druckanteil <math>\rho g z</math> repräsentiert die [[Lageenergie]] des Fluidelements, nimmt also mit der ''Höhe'' <math>z</math> zu und nicht mit der Tiefe, wie der [[#Hydrostatischer Druck|#hydrostatische Druck]]. | |||
Wenn beispielsweise die Stromlinie im Punkt 1 die Niveaufläche <math>z=0</math> passiert, wo der Umgebungsdruck <math>p_0</math> herrscht, und die Beiträge der dynamischen Drücke vernachlässigbar sind, dann ergibt obige Gleichung bei einem anderen Punkt 2 auf derselben Stromlinie: | |||
<math>p_\mathrm{t}=p_\mathrm{s1}+\rho g z_1=p_0=p_\mathrm{s2}+\rho g z_2 | |||
\;\rightarrow\quad | |||
p_\mathrm{s2}=p_0-\rho g z_2=p_0+\rho g h_2 | |||
</math> | |||
wo nun <math>h_2</math> mit der Tiefe zunimmt und mithin <math>p_\mathrm{s2}</math> den hydrostatischen Druck im Punkt 2 angibt, so wie es sein muss. | |||
Druckverluste durch einen Impulsverlust an den Strömungsrändern kann mit [[Druckverlustbeiwert]]en in der erweiterten Bernoulli’schen Druckgleichung zäher Flüssigkeiten berücksichtigt werden. | |||
== {{Anker|Gasdruck}} | == Druck in der kinetischen Gastheorie {{Anker|Gasdruck}} == | ||
[[Datei:Pressure exerted by collisions.svg|mini|Gasteilchen, die in einem Gefäß eingeschlossen sind, üben einen Druck auf die Gefäßwände aus.]] | [[Datei:Pressure exerted by collisions.svg|mini|Abb. 8: Gasteilchen, die in einem Gefäß eingeschlossen sind, üben einen Druck auf die Gefäßwände aus.]] | ||
Der '''Gasdruck''' entsteht als Summe aller durch ein [[Gas]] oder [[Gemisch|Gasgemisch]] wirkenden [[Kraft|Kräfte]] auf eine Fläche. Stößt ein Gasteilchen an eine Wand, | Der '''Gasdruck''', wie der [[Luftdruck]] einer ist, entsteht als Summe aller durch ein [[Gas]] oder [[Gemisch|Gasgemisch]] wirkenden [[Kraft|Kräfte]] auf eine Fläche. Stößt ein Gasteilchen an eine Wand, tauschen beide wie bei einem [[Elastischer Stoss|elastischen Stoss]] einen [[Impuls]] aus. Je höher die [[innere Energie]] des Gases ist, desto schneller sind die Teilchen und desto größer ist auch der Druck. Die Impulsübertragung hängt nämlich von der [[Kinetische Energie|kinetischen Energie]] des Gasteilchens ab. Ebenfalls abhängig ist die Impulsübertragung von der Richtung, mit der das Teilchen auf die Wand trifft. Für viele Teilchen addieren sich diese Impulsüberträge zu einer Gesamtkraft. Diese hängt von der Anzahl der Teilchen ab, die pro Zeiteinheit auf die Wand treffen, und ihrem mittleren Impuls. In einem Gasgemisch entsteht der Gasdruck aus den [[Partialdruck|Partialdrücken]] der Komponenten des Gemisches. Verdampfende Flüssigkeiten erzeugen einen [[Dampfdruck]], der sich bis zum [[Sättigungsdampfdruck]] aufbauen kann. Der Luftdruck ist ein Beispiel für einen Gasdruck. | ||
Die [[kinetische Gastheorie]] liefert aus den genannten mechanischen und statistischen Überlegungen die [[Zustandsgleichung]] | Die [[kinetische Gastheorie]] liefert aus den genannten mechanischen und statistischen Überlegungen die [[Zustandsgleichung]] | ||
Zeile 172: | Zeile 239: | ||
:<math>p := -\frac{\partial U(S,V,n)}{\partial V} \,</math> | :<math>p := -\frac{\partial U(S,V,n)}{\partial V} \,</math> | ||
mit der in der [[Thermodynamik]] der Druck als [[intensive Größe]] ''definiert'' wird (siehe auch [[Fundamentalgleichung]]). In einem zweiten Schritt wird gezeigt, dass dieser Druck auch tatsächlich dem Quotient aus Kraft und Fläche gleicht.<ref>{{Literatur| Autor=F. Schneider| Titel=Physikalische Chemie I| Jahr=2007| Hrsg=Arbeitsgruppe Physikalische Chemie III an der Universität | mit der in der [[Thermodynamik]] der Druck als [[intensive Größe]] ''definiert'' wird (siehe auch [[Fundamentalgleichung]]). In einem zweiten Schritt wird gezeigt, dass dieser Druck auch tatsächlich dem Quotient aus Kraft und Fläche gleicht.<ref>{{Literatur| Autor=F. Schneider| Titel=Physikalische Chemie I| Jahr=2007| Hrsg=Arbeitsgruppe Physikalische Chemie III an der Universität Siegen| Online=http://www2.uni-siegen.de/~pciii/pctexte.html| Format=PDF| Zugriff=2017-04-25| Kommentar=siehe PC I, Teile 1 und 2}}</ref> | ||
Im Spezialfall eines [[Ideales Gas|idealen Gases]] gilt die [[Thermische Zustandsgleichung Idealer Gase|thermische Zustandsgleichung]]: | Im Spezialfall eines [[Ideales Gas|idealen Gases]] gilt die [[Thermische Zustandsgleichung Idealer Gase|thermische Zustandsgleichung]]: | ||
:<math> | :<math>p=\frac{n \, R \, T}{V}</math> | ||
p=\frac{n \, R \, T}{V} | |||
</math> | |||
Aufgrund der kinetischen Gastheorie folgt | Aufgrund der kinetischen Gastheorie folgt | ||
:<math> | :<math>p = \frac{n \, M \, \overline{v^2}}{3 V} \,</math> | ||
p = \frac{n \, M \, \overline{v^2}}{3 V} \, | |||
</math> | |||
Hierbei stehen die einzelnen Formelzeichen für folgende [[Physikalische Größen und ihre Einheiten|Größen]]: | Hierbei stehen die einzelnen Formelzeichen für folgende [[Physikalische Größen und ihre Einheiten|Größen]]: | ||
: | : <math>V</math> – [[Volumen]] | ||
: <math>n</math> – [[Stoffmenge]] | |||
: <math>R</math> – [[Universelle Gaskonstante]] | |||
: <math>T</math> – [[Temperatur]] | |||
: <math>M</math> – [[Molmasse]] | |||
: <math>\overline{v^2}</math> – das mittlere Geschwindigkeitsquadrat | |||
Der gemittelte Impulsübertrag ist im Produkt aus Gaskonstante und Temperatur der Zustandsgleichung enthalten. Der Gasdruck liefert über die Zustandsgleichung das [[Materialmodell]] für das ideale Gas: | Der gemittelte Impulsübertrag ist im Produkt aus Gaskonstante und Temperatur der Zustandsgleichung enthalten. Der Gasdruck liefert über die Zustandsgleichung das [[Materialmodell]] für das ideale Gas: | ||
Zeile 207: | Zeile 262: | ||
=-p(\rho, T)\mathbf{1} | =-p(\rho, T)\mathbf{1} | ||
=-\frac{nRT}{V}\mathbf{1} | =-\frac{nRT}{V}\mathbf{1} | ||
=- | =-R_\mathrm{s} T\rho\mathbf{1} | ||
</math> | |||
Darin ist | Darin ist <math>R_\mathrm{s}</math> – die [[spezifische Gaskonstante]] – ein Materialparameter des Gases. Die Strömung eines idealen Gases gehorcht den [[Eulersche Gleichungen (Strömungsmechanik)| Euler’schen Gleichungen der Strömungsmechanik]] und auf einer Stromlinie zusätzlich der Bernoulli-Gleichung, wenn die Strömung [[Isotherme Zustandsänderung|isoterm]] oder [[Isentrope Zustandsänderung|isentrop]] ist. | ||
== Definition in der statistischen Physik und Thermodynamik == | == Definition in der statistischen Physik und Thermodynamik == | ||
Zeile 237: | Zeile 292: | ||
(<math>\Omega</math> ist das Großkanonische Potential). | (<math>\Omega</math> ist das Großkanonische Potential). | ||
Gemäß der [[Stokessche Hypothese| Hypothese von Stokes]] aus dem Jahr 1845 ist der mechanische Druck gleich dem thermodynamischen Druck. Dies gilt jedoch nur unter Einschränkungen<ref name="Capaldi" /> | Gemäß der [[Stokessche Hypothese|Hypothese von Stokes]] aus dem Jahr 1845 ist der mechanische Druck gleich dem thermodynamischen Druck. Dies gilt jedoch nur unter Einschränkungen,<ref name="Capaldi" /> siehe oben. | ||
== Absoluter / Relativer Druck == | == Absoluter / Relativer Druck == | ||
Der absolute Druck | Der absolute Druck <math>p_\text{abs}</math> ({{enS|absolute pressure}}) bezieht sich auf das perfekte [[Vakuum]]. Bei diesem absolut teilchenfreien Raum ist der Nullpunkt des absoluten Drucks definiert. Ein Beispiel für einen häufig „absolut“ angegebenen Wert ist der [[Luftdruck]]. | ||
Ein Beispiel für einen häufig „absolut“ angegebenen Wert ist der [[Luftdruck]]. | |||
Als relativen Druck bezeichnet man eine relative Druckbeziehung zwischen zwei Volumina. Häufig wird der Umgebungsdruck als Bezugsgröße verwendet, jedoch bieten sich je nach Zusammenhang auch andere Bezugsgrößen an. | Als relativen Druck bezeichnet man eine relative Druckbeziehung zwischen zwei Volumina. Häufig wird der Umgebungsdruck als Bezugsgröße verwendet, jedoch bieten sich je nach Zusammenhang auch andere Bezugsgrößen an. Beispiele für einen häufig „relativ“ angegebenen Druck sind der [[Reifendruck|Fülldruck]] eines [[Reifen]]s und der [[Blutdruck]]. | ||
Beispiele für einen häufig „relativ“ angegebenen Druck sind der [[Reifendruck|Fülldruck]] eines [[Reifen]]s und der [[Blutdruck]]. | |||
Zur Verdeutlichung: Füllt man bei einem Luftdruck von 1 bar einen Reifen mit einem relativen Druck von 2 bar, herrscht im Reifen ein absoluter Druck von 3 bar. Analog muss der Luftdruck zum Blutdruck addiert werden, um den absoluten Blutdruck zu erhalten. | Zur Verdeutlichung: Füllt man bei einem Luftdruck von 1 bar einen Reifen mit einem relativen Druck von 2 bar, herrscht im Reifen ein absoluter Druck von 3 bar. Analog muss der Luftdruck zum Blutdruck addiert werden, um den absoluten Blutdruck zu erhalten. | ||
== Einheiten == | == Einheiten == | ||
Zeile 252: | Zeile 305: | ||
:<math> | :<math> | ||
\mathrm{1 \ Pa = 1 \ \frac{N}{m^2} = 1 \ \frac{kg}{m \cdot s^2}} | \mathrm{1 \, Pa = 1 \, \frac{N}{m^2} = 1 \, \frac{kg}{m \cdot s^2}} | ||
</math> | </math> | ||
Im Ingenieurwesen wird für Druck ebenso wie für die [[mechanische Spannung]] auch die Einheit N/[[Quadratmillimeter|mm²]] oder [[Megapascal|MPa]] verwendet: | Im Ingenieurwesen wird für Druck (ebenso wie für die [[mechanische Spannung]]) auch die Einheit N/[[Quadratmillimeter|mm²]] oder [[Megapascal|MPa]] verwendet: | ||
:<math>1 \ \frac{\mathrm{N}}{\mathrm{mm}^2} = 1 \ \mathrm{MPa}</math> | :<math>1 \, \frac{\mathrm{N}}{\mathrm{mm}^2} = 1 \, \mathrm{MPa}</math> | ||
=== Umrechnung zwischen den gebräuchlichsten Einheiten === | === Umrechnung zwischen den gebräuchlichsten Einheiten === | ||
Weitere gebräuchliche Einheiten waren oder sind: | Weitere gebräuchliche Einheiten waren oder sind: | ||
* | * das [[Bar (Einheit)|Bar]], das 100.000 Pa = 1000 hPa = 100 kPa entspricht, | ||
* die [[Technische Atmosphäre]] at = [[Kilopond|kp]]/cm², die auf der Erde dem Druck der [[Gewichtskraft]] eines [[Kilogramm]]s verteilt auf einem [[Quadratzentimeter]] gleichkommt | * die [[Technische Atmosphäre]] at = [[Kilopond|kp]]/cm² = 98,0665 kPa, die auf der Erde dem Druck der [[Gewichtskraft]] eines [[Kilogramm]]s verteilt auf einem [[Quadratzentimeter]] gleichkommt (entspricht dem Druck von 10 m Wassersäule), | ||
* die [[Physikalische Atmosphäre]] atm, die gleich dem [[Standardbedingungen#Normaldruck| Normaldruck]] auf der Erde ist, | * die [[Physikalische Atmosphäre]] atm, die gleich dem [[Standardbedingungen#Normaldruck| Normaldruck]] auf der Erde (101,325 kPa) ist, | ||
* das | * das [[Torr]], das dem Druck von einem Millimeter Quecksilbersäule (mmHg) entspricht und heute als {{Bruch|760}} atm definiert ist, | ||
* das in den [[Vereinigte Staaten|USA]] gebräuchliche [[Pound-force per square inch]] psi = [[Pound-force|lb<sub> | * das in den [[Vereinigte Staaten|USA]] gebräuchliche {{lang|en|[[Pound-force per square inch]]}} psi = [[Pound-force|lb<sub>f</sub>]]/[[Zoll (Einheit)|in²]] ([[Pound-force|Kraftpfund]] pro [[Quadratzoll]]) aus dem [[Angloamerikanisches Maßsystem|angloamerikanischen Maßsystem]]. | ||
Die Umrechnung zwischen diesen Einheiten ist auf fünf [[signifikante Stellen]] genau in der Tabelle angeben. | Die Umrechnung zwischen diesen Einheiten ist auf fünf [[signifikante Stellen]] genau in der Tabelle angeben. | ||
{| class="wikitable | {| class="wikitable" | ||
|- | |- | ||
! colspan="2"| | ! colspan="2"| | ||
Zeile 280: | Zeile 333: | ||
! psi | ! psi | ||
|- | |- | ||
! style="border-right: 0pt; text-align:left"| 1 Pa | ! style="border-right: 0pt; text-align:left;"| 1 Pa | ||
! style="border-left: 0pt| = | ! style="border-left: 0pt;" | = | ||
| 1 | | style="text-align:center" | 1 | ||
| 1 | | {{0|00}}1 · 10<sup>−5</sup> | ||
| 1,0197 · 10<sup>−5</sup> | | 1,0197 · 10<sup>−5</sup> | ||
| 9,8692 · 10<sup>−6</sup> | | 9,8692 · 10<sup>−6</sup> | ||
Zeile 289: | Zeile 342: | ||
| 1,4504 · 10<sup>−4</sup> | | 1,4504 · 10<sup>−4</sup> | ||
|- | |- | ||
! style="border-right: 0pt; text-align:left"| 1 bar | ! style="border-right: 0pt; text-align:left;"| 1 bar | ||
! style="border-left: 0pt| = | ! style="border-left: 0pt;" | = | ||
| 1 | | {{0|00}}1 · 10<sup>5</sup> | ||
| 1 | | style="text-align:center" | 1 | ||
| 1,0197 | | 1,0197 | ||
| | | 0,98692 | ||
| | | 750,06 | ||
| | | 14,504 | ||
|- | |- | ||
! style="border-right: 0pt; text-align:left"| 1 at | ! style="border-right: 0pt; text-align:left;"| 1 at | ||
! style="border-left: 0pt| = | ! style="border-left: 0pt;" | = | ||
| 9,8067 · 10<sup>4</sup> | | 9,8067 · 10<sup>4</sup> | ||
| | | 0,98067 | ||
| 1 | | style="text-align:center" | 1 | ||
| | | 0,96784 | ||
| | | 735,56 | ||
| | | 14,223 | ||
|- | |- | ||
! style="border-right: 0pt; text-align:left"| 1 atm | ! style="border-right: 0pt; text-align:left;"| 1 atm | ||
! style="border-left: 0pt| = | ! style="border-left: 0pt;" | = | ||
| 1,0133 · 10<sup>5</sup> | | 1,0133 · 10<sup>5</sup> | ||
| 1,0133 | | 1,0133 | ||
| 1,0332 | | 1,0332 | ||
| 1 | | style="text-align:center" | 1 | ||
| | | {{0|00}}760 | ||
| | | 14,696 | ||
|- | |- | ||
! style="border-right: 0pt; text-align:left"| 1 Torr | ! style="border-right: 0pt; text-align:left;"| 1 Torr | ||
! style="border-left: 0pt| = | ! style="border-left: 0pt| = | ||
| | | 133,32 | ||
| 1,3332 · 10<sup>−3</sup> | | 1,3332 · 10<sup>−3</sup> | ||
| 1,3595 · 10<sup>−3</sup> | | 1,3595 · 10<sup>−3</sup> | ||
| 1,3158 · 10<sup>−3</sup> | | 1,3158 · 10<sup>−3</sup> | ||
| 1 | | style="text-align:center" | 1 | ||
| 1,9337 · 10<sup>−2</sup> | | 1,9337 · 10<sup>−2</sup> | ||
|- | |- | ||
! style="border-right: 0pt; text-align:left"| 1 psi | ! style="border-right: 0pt; text-align:left;"| 1 psi | ||
! style="border-left: 0pt| = | ! style="border-left: 0pt| = | ||
| 6,8948 · 10<sup>3</sup> | | 6,8948 · 10<sup>3</sup> | ||
Zeile 331: | Zeile 384: | ||
| 7,0307 · 10<sup>−2</sup> | | 7,0307 · 10<sup>−2</sup> | ||
| 6,8046 · 10<sup>−2</sup> | | 6,8046 · 10<sup>−2</sup> | ||
| | | 51,715 | ||
| 1 | | style="text-align:center" | 1 | ||
|} | |} | ||
=== Weitere Einheiten === | === Weitere Einheiten === | ||
Die folgenden nicht [[Internationales Einheitensystem|SI-konformen]] Druckeinheiten sind in Literatur zu finden<ref name="lexikon" /> | Die folgenden nicht [[Internationales Einheitensystem|SI-konformen]] Druckeinheiten sind in Literatur zu finden:<ref name="lexikon" /> | ||
* 1 [[Meter Wassersäule]] (mWS) = 0,1 at = 9,80665 kPa | * 1 [[Meter Wassersäule]] (mWS) = 0,1 at = 9,80665 kPa | ||
* 1 | * 1 [[Zoll (Einheit)|Zoll]] Quecksilber ({{enS|[[Zoll (Einheit)|inch]] of mercury}}, inHg) = 25,4 Torr = 3386,389 Pa bei 0 °C | ||
* 1 Micron (1 µm) Quecksilbersäule = 1 µm Hg = 1 mTorr = 0,13332 Pa (wird vereinzelt in der Vakuumtechnik verwendet) | |||
* 1 Micron | * 1 [[Angloamerikanisches Maßsystem#Druck|{{lang|en|''poundal per square foot''}}]] (pdl/ft²) = 1,4882 Pa | ||
* 1 [[Angloamerikanisches Maßsystem#Druck|poundal per square foot]] (pdl/ft²) = 1,4882 Pa | * 1 {{lang|en|inch of water|de=Zoll Wassersäule}} (inH<sub>2</sub>O) = 249,089 Pa | ||
* 1 inch of water | * 1 {{lang|en|foot of water|de=Fuß Wassersäule}} (ftH<sub>2</sub>O) = 2989,07 Pa | ||
* 1 foot of water | |||
== Druckmessgeräte und -verfahren == | == Druckmessgeräte und -verfahren == | ||
[[Datei:druckmessumformer.jpg|mini|Abb. 9: Druckmessumformer]] | |||
{{Hauptartikel|Druckmessgerät}} | {{Hauptartikel|Druckmessgerät}} | ||
Ein ''Druckmessgerät'' wird auch ''Manometer'' genannt. In den meisten Anwendungen wird der Relativdruck – also bezogen auf den atmosphärischen [[Luftdruck]] – gemessen. Absolutdruckmessinstrumente verwenden ein Vakuum als Bezugsdruck (z. B. [[Barometer]]). Differenzdruckmessgeräte messen, wie die anderen auch, einen Druckunterschied, jedoch zwischen zwei beliebigen Systemen. Druckmessgeräte beruhen auf verschiedenen [[Messprinzip]]ien: | Ein ''Druckmessgerät'' wird auch ''Manometer'' genannt. In den meisten Anwendungen wird der Relativdruck – also bezogen auf den atmosphärischen [[Luftdruck]] – gemessen. Absolutdruckmessinstrumente verwenden ein Vakuum als Bezugsdruck (z. B. [[Barometer]]). Differenzdruckmessgeräte messen, wie die anderen auch, einen Druckunterschied, jedoch zwischen zwei beliebigen Systemen. Druckmessgeräte beruhen auf verschiedenen [[Messprinzip]]ien: | ||
Zeile 355: | Zeile 408: | ||
* [[Blutdruckmessgerät]]e messen indirekt, indem akustische Ereignisse beim Entspannen der vorher komprimierten Adern aufgefangen werden | * [[Blutdruckmessgerät]]e messen indirekt, indem akustische Ereignisse beim Entspannen der vorher komprimierten Adern aufgefangen werden | ||
* Druckmessumformer sind Druckmessgeräte, die in industriellen Umgebungen eingesetzt werden können. Dazu wird das gewonnene Druckmesssignal in ein definiertes Signal umgeformt. | * Druckmessumformer sind Druckmessgeräte, die in industriellen Umgebungen eingesetzt werden können. Dazu wird das gewonnene Druckmesssignal in ein definiertes Signal umgeformt. | ||
* [[Drucksensitive Farbe]] (englisch pressure sensitive paint, PSP) machen lokale Druckverteilungen an Grenzflächen sichtbar. | * [[Drucksensitive Farbe]]n (englisch pressure sensitive paint, PSP) machen lokale Druckverteilungen an Grenzflächen sichtbar. | ||
* Eine [[Ringwaage]] misst sehr kleine Drücke über ein mechanisches Verfahren zwischen zwei beliebigen Systemen. | * Eine [[Ringwaage]] misst sehr kleine Drücke über ein mechanisches Verfahren zwischen zwei beliebigen Systemen. | ||
== Siehe auch == | == Siehe auch == | ||
*[[ | * [[Liste von Größenordnungen des Druckes]] | ||
== Weblinks == | == Weblinks == | ||
* [ | * [https://www.leifiphysik.de/mechanik/druck-und-auftrieb Versuche und Aufgaben zum Druck] ([[LEIFIphysik|LEIFI]]) | ||
== Einzelnachweise == | == Einzelnachweise == | ||
<references /> | <references /> | ||
{{Normdaten|TYP=s|GND=4013083-6}} | |||
[[Kategorie:Thermodynamische Zustandsgröße]] | [[Kategorie:Thermodynamische Zustandsgröße]] |
Physikalische Größe | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name | Druck | |||||||||
Formelzeichen | ||||||||||
|
In der Physik ist der Druck die Wirkung einer flächenverteilten Kraft, die senkrecht auf einen Körper wirkt. Der Druck ist positiv, wenn er zum Körper hin gerichtet ist, ein negativer Druck entspricht einem Zug.[1] Ein Beispiel ist der Schneeball, der von Hand geformt wird, indem durch Druck der Handinnenfläche der lockere Schnee zusammengedrückt wird. Umgekehrt übt der Schnee dabei auch einen spürbaren Gegendruck auf die Handinnenfläche aus. Druck tritt nicht nur an Grenz- und Oberflächen, sondern auch im Inneren von Festkörpern, Flüssigkeiten oder Gasen auf. So ist der Luftdruck auf der Erdoberfläche allgegenwärtig. Nach dem Pascal’schen Prinzip (von Blaise Pascal) breitet sich Druck in ruhenden Flüssigkeiten und Gasen allseitig aus und wirkt nach Leonhard Euler im Volumen in alle Richtungen, aber immer senkrecht auf Wände.[2]
Druck ist eine intensive, skalare physikalische Größe, die insbesondere in der Strömungsmechanik und Thermodynamik eine wichtige Rolle spielt. Die flächenverteilte Kraft ist genauer der mechanische Druck, der eine in alle Raumrichtungen gleichermaßen wirkende Normalspannung (ein Spezialfall der mechanischen Spannung) ist. Der thermodynamische Druck ist eine Zustandsgröße, die bei einem Gas mit einer Zustandsgleichung definiert wird, und diese Zustandsgröße kann im Ungleichgewicht vom mechanischen Druck abweichen. Das übliche Formelzeichen p lehnt sich an das lateinische bzw. englische Wort für Druck (lateinisch pressio, englisch pressure) an.
Das Pauli-Prinzip der Quantenphysik führt bei Fermionen zu einem Entartungsdruck, der beispielsweise einen Weißen Zwergstern vor dem weiteren Kollaps bewahrt. Nach der allgemeinen Relativitätstheorie trägt auch Druck zur Gravitationswirkung bei.
In der Kontinuumsmechanik stellt der Druck ein skalares Druckfeld dar, das jeden Körper ausfüllt.
Im Altertum waren bereits Archimedes, Ktesibios, Philon von Byzanz, Heron von Alexandria und Sextus Iulius Frontinus die Wirkung des Drucks von Wasser und Luft bekannt. Im Mittelalter ist Alhazen zu erwähnen, der sich eine richtige Vorstellung vom Luftdruck machte bevor in der Renaissance der holländische Kaufmann Simon Stevin (1548–1620) die ersten Prinzipien der Hydrostatik und das hydrostatische Paradoxon formulierte, siehe Abb. 2.[3]
Grundlegende Forschungsarbeiten nahmen im 17. Jahrhundert ihren Ausgang am Hof des Großherzogs Cosimo II. de’ Medici[4]. Dort stellte der Brunnenmeister mit Erstaunen fest, dass er Wasser mittels einer Saugpumpe nicht höher als 32 Fuß (10,26 m) heben konnte. Über der Wassersäule bildete sich – wie im Rohr in Abb. 3 – ein luftleerer Raum, der das weitere Aufsteigen verhindert. Dieses Phänomen wurde dem Lehrer und Hofmathematiker Cosimos II., Galileo Galilei, mitgeteilt, der es daraufhin in seinen Discorsi behandelte (S. 16–17). Vincenzo Viviani, ein Mitarbeiter Galileis, schloss 1643 als erster, dass es der Luftdruck ist, der das Wasser im Saugrohr hochdrückt (in Abb. 3 bei B). Evangelista Torricelli, Assistent und Nachfolger Galileis, machte Versuche mit einem mit Quecksilber gefüllten Rohr wie in Abb. 3 und erklärte aus der unterschiedlichen Dichte von Wasser und Quecksilber, warum ersteres 13½ mal höher steigt als letzteres mit 760 mm. Dabei erfand Torricelli das Quecksilberbarometer.[5] [6]
Die Kunde vom „italienischen Experiment“ kam 1644 über Marin Mersenne und den Physiker Pierre Petit zu Blaise Pascal. Dieser wiederholte Torricellis Experimente und folgerte, dass der Druck in einer Flüssigkeit oder einem Gas proportional zur Tiefe ist. Entsprechend muss, wenn die Quecksilbersäule vom Luftdruck getragen wird, ihre Höhe auf einem Berg kleiner als im Tal sein. Petit und Pascals Schwager Florin Périer führten am 19. September 1648 die entsprechenden Messungen in Clermont-Ferrand und auf dem Gipfel des 1465 m hohen Puy de Dôme durch und erhielten die erwarteten Ergebnisse.[7] Schon im Oktober veröffentlichte Pascal seine Resultate als Bericht vom großen Experiment über das Gleichgewicht von Flüssigkeiten (Pascal: Récit de la grande expérience de l'équilibre des liqueurs)[5]. In der Abhandlung über das Gleichgewicht von Flüssigkeiten und vom Gewicht der Masse der Luft[8] von 1653 formulierte Pascal unter anderem
Otto von Guericke führte 1654 vor dem Reichstag zu Regensburg sein berühmtes Experiment mit den Magdeburger Halbkugeln vor, siehe Abb. 4.
Neue Erkenntnisse kamen unter anderem von[10]
Druck ist eine flächenverteilte Kraft, wie sie in Abb. 5 dargestellt ist. Sie ergibt sich als Grenzwert des Verhältnisses, der auf ein Flächenstück
mit:
– Druck | |
– Normalkraft und | |
– Fläche, auf die die Kraft einwirkt. |
Im Inneren eines Körpers kann ein Flächenelement mit Hilfe des Schnittprinzips hergestellt werden. Im betrachteten Punkt X wird der Körper gedanklich in zwei Teile geteilt und der Druck in X wirkt auf den Schnittflächen senkrecht. In einem isotropen, ruhenden oder idealen Fluid ist der Druck in X immer derselbe, egal welche Orientierung die Schnittfläche hat: Im Punkt X im inneren des Fluids wirkt der Druck allseitig.[12] Im Allgemeinen ergibt sich der Druck aus dem Mittelwert der flächenverteilten Kräfte auf allen möglichen Schnittflächen in X, siehe #Definition in Technischer Mechanik und Kontinuumsmechanik.
In der Realität sind Kräfte immer flächen- oder volumenverteilt. Gedanklich kann die resultierende Kraft
Der Druck ergibt sich ausschließlich aus der senkrecht zur Fläche stehenden Komponente
Der Normaleneinheitsvektor
Gelegentlich wird gesagt, Druck wirke in eine bestimmte Richtung. Physikalisch wäre hier richtiger von der Druckkraft die Rede, die in eine Richtung drücken kann. In der Physik ist Druck jedoch als skalare Größe richtungslos oder „allseitig wirkend“.
Für inkompressible und für kompressible Fluide tragen unterschiedliche Komponenten zum Gesamtdruck bei. Bei frei strömenden Fluiden kann bei Geschwindigkeiten weit unterhalb der Wellenausbreitungsgeschwindigkeit insbesondere in Flüssigkeiten in guter Näherung Inkompressibilität angenommen werden. Ruhende Gase hingegen sind kompressibel.
In der Festigkeitslehre der technischen Mechanik und der Kontinuumsmechanik ist der Druck eine in alle Raumrichtungen wirkende Normalspannung
Der Druck ist definiert als eine in alle Raumrichtungen wirkende Normalspannung.
In der Kontinuumsmechanik gilt die Vorzeichenregel, dass Zugkräfte eine positive Spannung bewirken und durch Druckkräfte hervorgerufene Spannungen ein negatives Vorzeichen besitzen. Gleichzeitig gilt die Konvention, dass positiver Druck komprimierend wirkt: somit ruft positiver Druck eine negative Spannung hervor.
Der Spannungszustand in einem Körper wird durch den Spannungstensor σ zu einem mathematischen Objekt zusammengefasst. Der mechanische Druck ist als das negative Drittel der Spur des Spannungstensors definiert:[14]
Hier sind
ausschließlich Druckspannungen enthält, wird er Drucktensor genannt. Hier ist 1 der Einheitstensor.
In einem durch eine Fläche berandeten Körper sei der Normaleneinheitsvektor
D. h. die Richtung der Kraft ist auf einer Fläche immer normal und bei positivem Druck auf den Körper gerichtet.
Frei strömende Fluide sind bei Geschwindigkeiten weit unterhalb der Wellenausbreitungsgeschwindigkeit in guter Näherung inkompressibel. Dann ist der Druck eine „Zwangsspannung“, die als Reaktion des Fluids auf Kompressionsversuche die Inkompressibilität aufrechterhält. Mathematisch ist der Druck hier ein Lagrange’scher Multiplikator für die Nebenbedingung „Inkompressibilität“. Ein Beispiel zur Berechnung des Drucks in der Festkörpermechanik ist im Artikel zur Hyperelastizität gegeben.
Materialmodelle definieren den Spannungstensor als Funktion der Deformation des Körpers, wobei der Begriff der Deformation hier so weit gefasst wird, dass auch das Fließen einer Flüssigkeit oder das Strömen eines Gases darunter fällt. Die in der Strömungsmechanik benutzten Materialmodelle für das ideale Gas und das newtonsche Fluid haben die Form
wobei der Anteil S im newtonschen Fluid durch Viskosität entsteht und im idealen Gas wegfällt. Der Druck pthermo ist der thermodynamische Druck, der sich bei einem Gas aus einer Zustandsgleichung bestimmt und im Allgemeinen eine Funktion der Dichte und Temperatur ist. Der mechanische Druck ist dann:
Bei vorhandener Volumenviskosität des Fluids kann der zweite Summand im Ungleichgewicht von Null verschieden sein, sodass sich dann der mechanische und thermodynamische Druck im Fluid voneinander unterscheiden.[16] Die Differenz wäre eine Folge eines erhöhten Widerstands gegen Kompression auf Grund der Volumenviskosität und würde bei Annäherung an ein Gleichgewicht gegen Null gehen.
Der Spannungstensor ist in jedem Punkt des Fluids definiert und stellt somit ein Feld dar. Aus diesem Feld kann ein ebenfalls den ganzen Körper ausfüllendes Druckfeld abgeleitet werden. Die Divergenz des Spannungstensors repräsentiert den Kraftfluss im Fluid und daher bremst gemäß
In strömenden Flüssigkeiten und Gasen (Fluiden) nimmt der Druck gegenüber ruhenden Bereichen des Strömungsfelds ab. Der Druck wird hier statischer Druck genannt und die Druckabnahme dynamischer Druck. Letzterer manifestiert sich erst, wenn das strömende Fluid abgebremst wird (Staudruck). Während beide Teile mit der Dichte wachsen, nimmt nur der statische Anteil mit dem hydrostatischen Druck zu, der von der Ortshöhe und von der Erdbeschleunigung, also der Gravitation, abhängig ist.
In Strömungen, wo die Bernoulli-Gleichung anwendbar ist (insbesondere in dünnflüssigen inkompressiblen Fluiden) gibt es eine Bewegungskonstante, den Total- oder Gesamtdruck, der auf einer Stromlinie überall denselben Wert hat. Er ist die Summe aus dem statischen und dem dynamischen Druck sowie einem Anteil, der die Lageenergie berücksichtigt und gegenläufig zum hydrostatischen Druck zunimmt.
In einem realen System sind zusätzlich die Druckverluste im Strömungsverlauf zu beachten, etwa durch den Impulsaustausch des viskosen Fluids mit der Wandung der Rohrleitung infolge der Haftbedingung.
Ein in einem Schwerefeld ruhendes Fluid übt auf jeden in ihm eingetauchten Körper nach dem Pascal’schen Prinzip einen allseitig wirkenden hydrostatischen Druck aus, der nach dem Pascal’schen Gesetz mit der Tiefe zunimmt. Beispiele für einen hydrostatischen Druck sind der Wasserdruck und der Luftdruck.
In der ruhenden Flüssigkeit existieren ausschließlich Normalspannungen, die in alle Richtungen gleichermaßen wirken, eben jener hydrostatische Druck. Im schubfreien hydrostatischen Spannungszustand degeneriert der Mohr’sche Spannungskreis zu einem Punkt.
Der hydrostatische Druck
Dabei ist
Der statische Druck ist der thermomechanische Druck in einer Strömung, den also ein Fluidelement spürt oder den ein mit ihm bewegter Beobachter messen würde. In der Bernoulli’schen Druckgleichung tritt er als Druck
Der dynamische Druck
Der dynamische Druck ist nicht direkt messbar, lässt sich aber bei verlustfreier, horizontaler und stationärer Strömung aus der Messung der Differenz zwischen Totaldruck und statischem Druck bestimmen (siehe Prandtlsonde). Aus dem dynamischen Druck kann dann die Geschwindigkeit des Fluids ermittelt werden.
Der Totaldruck
In Bereichen wo die Bernoulli’sche Druckgleichung anwendbar ist, ist der Totaldruck entlang eines Stromfadens konstant. Beim Übergang von einem größeren zu einem kleineren Querschnitt, wie in Abb. 7, muss gemäß dem Kontinuitätsgesetz die Strömungsgeschwindigkeit (und damit auch der dynamische Druck) zunehmen. Dies kann nur geschehen, wenn der statische Druck in den kleineren Querschnitten entsprechend abnimmt. Der statische Druckanteil
Wenn beispielsweise die Stromlinie im Punkt 1 die Niveaufläche
wo nun
Druckverluste durch einen Impulsverlust an den Strömungsrändern kann mit Druckverlustbeiwerten in der erweiterten Bernoulli’schen Druckgleichung zäher Flüssigkeiten berücksichtigt werden.
Der Gasdruck, wie der Luftdruck einer ist, entsteht als Summe aller durch ein Gas oder Gasgemisch wirkenden Kräfte auf eine Fläche. Stößt ein Gasteilchen an eine Wand, tauschen beide wie bei einem elastischen Stoss einen Impuls aus. Je höher die innere Energie des Gases ist, desto schneller sind die Teilchen und desto größer ist auch der Druck. Die Impulsübertragung hängt nämlich von der kinetischen Energie des Gasteilchens ab. Ebenfalls abhängig ist die Impulsübertragung von der Richtung, mit der das Teilchen auf die Wand trifft. Für viele Teilchen addieren sich diese Impulsüberträge zu einer Gesamtkraft. Diese hängt von der Anzahl der Teilchen ab, die pro Zeiteinheit auf die Wand treffen, und ihrem mittleren Impuls. In einem Gasgemisch entsteht der Gasdruck aus den Partialdrücken der Komponenten des Gemisches. Verdampfende Flüssigkeiten erzeugen einen Dampfdruck, der sich bis zum Sättigungsdampfdruck aufbauen kann. Der Luftdruck ist ein Beispiel für einen Gasdruck.
Die kinetische Gastheorie liefert aus den genannten mechanischen und statistischen Überlegungen die Zustandsgleichung
mit der in der Thermodynamik der Druck als intensive Größe definiert wird (siehe auch Fundamentalgleichung). In einem zweiten Schritt wird gezeigt, dass dieser Druck auch tatsächlich dem Quotient aus Kraft und Fläche gleicht.[18]
Im Spezialfall eines idealen Gases gilt die thermische Zustandsgleichung:
Aufgrund der kinetischen Gastheorie folgt
Hierbei stehen die einzelnen Formelzeichen für folgende Größen:
Der gemittelte Impulsübertrag ist im Produkt aus Gaskonstante und Temperatur der Zustandsgleichung enthalten. Der Gasdruck liefert über die Zustandsgleichung das Materialmodell für das ideale Gas:
Darin ist
In der statistischen Physik ist der Druck allgemein durch folgenden Erwartungswert gegeben:
dabei ist
Diese Definition führt im mikrokanonischen Ensemble zu
(
(
(
Gemäß der Hypothese von Stokes aus dem Jahr 1845 ist der mechanische Druck gleich dem thermodynamischen Druck. Dies gilt jedoch nur unter Einschränkungen,[16] siehe oben.
Der absolute Druck
Als relativen Druck bezeichnet man eine relative Druckbeziehung zwischen zwei Volumina. Häufig wird der Umgebungsdruck als Bezugsgröße verwendet, jedoch bieten sich je nach Zusammenhang auch andere Bezugsgrößen an. Beispiele für einen häufig „relativ“ angegebenen Druck sind der Fülldruck eines Reifens und der Blutdruck.
Zur Verdeutlichung: Füllt man bei einem Luftdruck von 1 bar einen Reifen mit einem relativen Druck von 2 bar, herrscht im Reifen ein absoluter Druck von 3 bar. Analog muss der Luftdruck zum Blutdruck addiert werden, um den absoluten Blutdruck zu erhalten.
Blaise Pascal zu Ehren wird die SI-Einheit des Drucks Pascal (mit dem Einheitenzeichen Pa) genannt, die einer Kraft von einem Newton (also der Gewichtskraft von etwa 100 Gramm) senkrecht verteilt auf einer Fläche von einem Quadratmeter entspricht:
Im Ingenieurwesen wird für Druck (ebenso wie für die mechanische Spannung) auch die Einheit N/mm² oder MPa verwendet:
Weitere gebräuchliche Einheiten waren oder sind:
Die Umrechnung zwischen diesen Einheiten ist auf fünf signifikante Stellen genau in der Tabelle angeben.
Pa | bar | at | atm | Torr | psi | ||
---|---|---|---|---|---|---|---|
1 Pa | = | 1 | 1 · 10−5 | 1,0197 · 10−5 | 9,8692 · 10−6 | 7,5006 · 10−3 | 1,4504 · 10−4 |
1 bar | = | 1 · 105 | 1 | 1,0197 | 0,98692 | 750,06 | 14,504 |
1 at | = | 9,8067 · 104 | 0,98067 | 1 | 0,96784 | 735,56 | 14,223 |
1 atm | = | 1,0133 · 105 | 1,0133 | 1,0332 | 1 | 760 | 14,696 |
1 Torr | = | 133,32 | 1,3332 · 10−3 | 1,3595 · 10−3 | 1,3158 · 10−3 | 1 | 1,9337 · 10−2 |
1 psi | = | 6,8948 · 103 | 6,8948 · 10−2 | 7,0307 · 10−2 | 6,8046 · 10−2 | 51,715 | 1 |
Die folgenden nicht SI-konformen Druckeinheiten sind in Literatur zu finden:[1]
Ein Druckmessgerät wird auch Manometer genannt. In den meisten Anwendungen wird der Relativdruck – also bezogen auf den atmosphärischen Luftdruck – gemessen. Absolutdruckmessinstrumente verwenden ein Vakuum als Bezugsdruck (z. B. Barometer). Differenzdruckmessgeräte messen, wie die anderen auch, einen Druckunterschied, jedoch zwischen zwei beliebigen Systemen. Druckmessgeräte beruhen auf verschiedenen Messprinzipien: